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Recognition by Linear Combinations of
Models

1 Modeling Objects by the Linear Combination of
Images

1.1 Recognition by Alignment

Visual object recognition requires the matching of an image with a set of models stored
in memory. Let M = {M 1 , ..., M,,} be the set of stored models, and P be the image
to be recognized. In general, the viewed object, depicted by P, may differ from all the
previously seen images of the same object. It may be, for instance, the image of a three-
dimensional object seen from a novel viewing position. To compensate for these varia-
tions, we may allow the models (or the viewed object) to undergo certain compensating
transformations during the matching stage. If T is the set of allowable transformations,
the matching stage requires the selection of a model Mi E M and a transformation
T E T, such that the viewed object P and the transformed model TMi will be as close
as possible. The general scheme is called the alignment approach, since an alignment
transformation is applied to the model (or to the viewed object) prior to, or during
the matching stage. Such an approach is used in [Chien & Aggarwal 1987, Faugeras &
Hebert 1986, Fishler & Bolles 1981, Huttenlocher & Ullman 1987, Lowe 1985, Thompson
& Mundy 1987, Ullman 1986]. Key problems that arise in any alignment scheme are how
to represent the set of different models M, what is the set of allowable transformations
T, and, for a given model Mi E M, how to determine-the transformation T E T so as to
minimize the difference between P and TMi. For example, in the scheme proposed by
Basri and Ullman [19881 a model is represented by a set of 2-D contours, with associated
depth and curvature values at each contour point. The set of allowed transformations in-
cludes 3-D rotation, translation and scaling, followed by an orthographic projection. The
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transformation is determined as in [Huttenlocher & Ullman 1987, Ullman 1986, 19891 by
identifying at least three corresponding features (points or lines) in the image and the
object.

In this paper we suggest a different approach, in which each model is represented
by the linear combination of 2-D images of the object. The new approach has several
advantages. First, it handles all the rigid 3-D transformations, but it is not restricted
to such transformations. Second, there is no need in this scheme to explicitly recover
and represent the 3-D structure of objects. Third, the computations involved are often
simpler than in previous schemes.

The paper is divided into two parts. In the first (section 1) we show that the variety
of views depicting the same object under different transformations can often be expressed
as the linear combinations of a small number of views. In the second part (section 2) we
suggest how this linear combination property may be used in the recognition process.

1.2 Using Linear Combinations of Images to Model Objects
and Their Transformations

The modeling of objects using linear combinations of images is based on the following
observation. For many continuous transformations of interest in recognition, such as
3-D rotation, translation and scaling, all the possible views of the transforming object
can be expressed simply as the linear combination of other views of the same object.
The coefficients of these linear combinations often follow in addition certain functional
restrictions. In the next two sections we show that the set of possible images of an object
undergoing rigid 3-D transformations and scaling is embedded in a linear space, spanned
by a small number of 2-D images.

The images we will consider are 2-D edge maps produced in the image by the (ortho-
graphic) projection of the bounding contours and other visible contours on 3-D objects.
We will make use of the following definitions. Given an object and a viewing direction,
the rim is the set of all the points on the object's surface, whose normal is perpendicular
to the viewing direction [Koenderink & Van Doom 1979]. This set is also called the
contour generator [Marr 1977]. A silhouette is an image generated by the orthographic
projection of the rim. In the analysis below we assume that every point along the silhou-
ette is generated by a single rim point. An edge map of an object usually contains the
silhouette, which is generated by its rim.

We will examine below two cases. The case of objects with sharp edges, and the case
of objects with smooth boundary contours. The difference between these two cases is
illustrated in Figure 1. For an object with sharp edges, such as the cube in Fig. 1 (a &
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0
b), the rim is stable on the object as long as the edge is visible. In contrast, a rim that
is generated by smooth bounding surfaces, such as in the ellipsoid in Fig. 1 (c & d), is
not fixed on the object, but changes continuously with the viewpoint.

1.3 Objects with Sharp Edges

In the discussion below we examine the case of objects with sharp edges undergoing
different transformations followed by an orthographic projection. In each case we show
how the image of an object obtained by the transformation in question can be expressed as
the linear combination of a small number of pictures. The coefficients of this combination
may be different for the x- and y-coordinates. That is, the intermediate view of the object
may be given by two linear combinations, one for the x-coordinates and the other for the
y-coordinates. In addition, certain functional restrictions may hold among the different
coefficients.

To introduce the scheme we first apply it to the restricted case of rotation about the
vertical axis, then examine more general transformations.

1.3.1 3-D Rotation Around the Vertical Axis

Let P and P2 be two images of an object 0 rotating in depth around the vertical axis
(Y-axis). P2 is obtained from P following a rotation by an angle a, (a # kir). Let 5 be
a third image of the same object obtained from P by a rotation of an angle 0 around the
vertical axis. The projections of a point p = (x, y, z) E 0 in the three images are given
by:

P, = (x1,y) = (x,y) E P,
P2 = (x2,Y2) = (x cos a + z sin a, y) E P2

= (i,) = (xcos0+zsin0,y) E P

Claim: Two scalars a and b exist, such that for every point p E 0:

= ax1 + bx2

with: Ac ession For
a2 + b 2 + 2ab cos a = 1 NTIS GRA&I

DTIC TAB 0

Proof: The scalars a and b are given explicitly by: Unannounced 0
Justlfl"oatflon

sin(a - 0)
a - sin a By

sin 0 Distribution/b-
sina Avallabl.lty Codes
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3 Meat 1%Peolal
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Figure 1:, Changes in the rim during rotation. (a) A bird's eye view of a cube. (b) The cube
after rotation. In both (a) and (b) points p, q lie on the rim. (c) A bird's eye view of an
ellipsoid. (d) The ellipsoid after rotation. The rim points p, q in (c) are replaced by p', q'
in (d). (e) An ellipsoid in a frontal view. (f) The rotated ellipsoid (outer), superimposed on
the appearance of the rim, as a planar space curve after rotation by the same amount (inner)
(From [Basri & Ullman, 1988]).
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Then:

sin(a - 0) sin 0axn bX2  +-(xcosa+zsina)=Xcos0+zsin= 
sin a sin a

Therefore, an image of an object rotating around the vertical axis is always a linear
combination of two model images. It is straightforward to verify that the coefficients a
and b satisfy the above constraint. It is worth noting that the new view P is not restricted
to be an intermediate view (that is, the rotation angle 0 may be larger than a). Finally,
it should be noted that we do not deal at this stage with occlusion, we assume here that
the same set of points is visible in the different views.

1.3.2 Linear Transformations in 3-D Space

Let 0 be a set of object points. Let P1, P2 and P3 be three images of 0, obtained by
applying 3 x 3 matrices R, S and T to 0, respectively. (In particular, R can be the
identity matrix, and R, S two rotations producing the second and third views.) Let P
be a fourth image of the same object obtained by applying a different 3 x 3 matrix U tc
0. Let rl, sI, t, and ul be the first row vectors of R, S, T and U, respectively, and let
r 2 , S2, t2 and u 2 be the second row vectors of R, S, T and U respectively. The positions
of a point p E 0 in the four images are given by:

Pi = (xl, yi) = (rip, r2p)
P2 = (X2 ,Y2) = (SIP, S2P)
P = (x 3,y3) = (tlp, t2p)

= ( = (uIp, u2p)

Claim: If both sets {r 1 ,s 1 ,t} and {r 2,s 2,t 2} are linearly independent, then there
exist scalars a,, a 2, a 3 and bl, b2, b3 such that for every point p E 0 it holds that:

, = alx+a 2x2 + a3x 3

= bly + b2y2 + b3Y3

Proof: {ri,si,ti} are linearly independent. Therefore, they span Ri3, and there exist
scalars a,, a2 and a3 such that:

ul = air, + a 2sI + a 3 tI

Since:
= up
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It follows that:
- a1r1p + a2sIp + a3t1p

Therefore:
z = aixi + a2X2 + a3x 3

In a similar way we obtain that:

= b1yl + b2Y2 + b3y3

Therefore, an image of an object undergoing a linear transformation in 3-D space is
a linear combination of three model images.

1.3.3 General Rotation in 3-D Space

Rotation is a nonlinear subgroup of the linear transformations. Therefore, an image of
a rotating object is still a linear combination of three model images. However, not every
point in this linear space represents a pure rotation of the object. Indeed, we can show
that only points that satisfy the following three constraints represent images of a rotating
object.

Claim: The coefficients of an image of a rotating object must satisfy the three following
constraints:

air, + a2 s,+at jj = 1 

bir2 + b2s 2 + b3t 2  = 1

(air, + a2SI + a3ti) (bir 2 + b2s2 + b3t2) = 0

Proof: U is a rotation matrix. Therefore:

11luil = 1
I1 u2 11 = 1

U1 U2 = 0

And the required terms are obtained directly by substituting ul and u 2 with the appro-
priate linear combinations. It also follows immediately that if the constraints are met,
then the new view represents a possible rotation of the object.

These functional constraints are second degree polynomials in the coefficients, and
therefore span a nonlinear manifold within the linear subspace. In order to check whether
a specific set of coefficients represents a rigid rotation, the values of the matrices R, S and
T are required. These can be retrived by applying methods of "structure from motion"
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to the model views. Ullman [1979] showed that in case of rigid transformations four
corresponding points in three views are sufficient. A linear algorithm that can be used
to recover the rotation matrices has been suggested by Huang & Lee [1989]. (The same
method can be extended to deal with scale changes, in addition to the rotation.)

It should be noted that in some cases the explicit computation of the rotation matrices
will not be necessary. First, if the set of allowable object transformations includes the
entire set of linear 3-D transformations (including non-rigid stretch and shear), then
no additional test of the coefficients is required. Second, if the transformations are
constrained to be rigid, but the test of the coefficient is not performed, then the penalty
may be some "false positives" misidentifications. If the image of one object happens to
be identical to the projection of a (non-linear) rigid transformation applied to another
object, then the two will be confuseable. If the objects contain a sufficient number of
points (five or more), the likelihood of such an ambiguity becomes negligible. Finally, it is
worth noting that it is also possible to determine the coefficient of the constraint equations
above without computing the rotation matrices, by using a number of additional views
(see also section 1.3.5).

Regarding the independence condition mentioned above, for many triplets of rotation
matrices R, S and T both {r1 , s1 , t1 } and {r 2 , s 2, t2 } will in fact be linearly independent.
It will therefore be possible to select a non degenerate triplet of views (P 1, P2 and P3 ), in
terms of which intermediate views are expressible as linear combinations. Note, however,
that in the special case that R is the identity matrix, S is a pure rotation about the
X-axis, and T about the Y-axis, the independence condition does not hold.

1.3.4 Rigid Transformations and Scaling in 3-D Space

Rotation, translation and scaling in 3-D space can be represented as linear transforma-
tions in 4-D space using homogenous coordinates. Therefore, an image of a rigid object
can be expressed as the linear combination of four model images. In fact, only three
different snapshots of the object are required, the fourth view can be derived from them.

Let 0 be a set of object points. Let P1, P2 and P3 be three images of 0, obtained by
applying the 3 x 3 rotation matrices R, S and T to 0, respectively. Let 5 be a fourth
image of the same object obtained by applying a 3 x 3 rotation matrix U to 0, scaling
by a scale factor s, and translating by a vector (t., ty). Let ri, si, tl and ul be again the
first row vectors of R, S, T and U, and r 2, s2, t 2 and u 2 the second row vectors of R, S,
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T and U, respectively. For any point p E 0, its positions in the four images are given by:

Pi = (xi,yi) = (r1p, r2p)

P2 = (X2,Y2 ) = (slp, S2P)
P3 = (X3, Y3 ) = (tlp, t2p)

P ( , #) = (Sup + tz, Su 2p + ty)

Claim: If both sets {ri,;s1 ,t} and {r 2 ,s 2 ,t 2 } are linearly independent, then there
exist scalars a,, a2, a3 , a 4 , and bl, b2 , b3 , b4, such that for every point p E 0 it holds that:

= ax,1 + a2 x2 + a3x 3 + a 4

Sbly + b2y2 + b3 Y3 + b4

with the coefficient satisfying the two constraints:

11 air, + a 2s 1 + a 3 tl 11 = 1 air 2 + b2s2 + b3t2 j

(air, + a2s1 + a3tl) (blr 2 + b2s2 + b3t2) = 0

Proof: {ri, si, tl} are linearly independent. Therefore, they span 1., and there exist
scalars cl, c2 and c3 such that:

Ul cir, + C2 Sl + c 3 tl

Since:
= s(uip) + t.,

Then
= scirip + sc 2sIp + sc3tlp + tG

Let:

a, = sc1

a2 = SC 2

a 3 = SC 3

a4 = t.

We obtain that:
-- aix 1 + a2 x 2 + a3x 3 + a4

In a similar way we obtain that:

= bly 1 + b2y2 + b3Y3 + b4

8



U is rotation matrix, therefore:

IIlull = 1
11 u2 1I = 1
ul u 2  - 0

It follows that:

II U I = II SU2 I
(suI) (SU2 ) = 0

And the constraints are obtained directly by substituting the appropriate linear combi-
nations for sul and su 2.

1.3.5 Using Two Views Only

In the scheme described above, any image of a given object (within a certain range of
rotations) is expressed as the linear combination of three fixed views of the object. For
general linear transformations, it is also possible to use instead just two views of the
object. (This observation was made independently by T. Poggio and R. Basri.)

Let 0 be again a rigid object (a collection of 3-D points). P is a 2-D image of 0,
and P 2 the image of 0 following a rotation by R (a 3 x 3 matrix). We will denote by ri,
r 2, r 3 , the three rows of R, and by el, e2 , e3, the three rows of the identity matrix. For
a given 3-D point p in 0, its coordinates (xi,yl) in the first image view are x, = elp,
yl = e 2p. Its coordinates (x 2 , Y2) in the second view are given by: x2 = rip, Y2 = r 2p.

Consider now any other view obtained by applying another 3 x 3 matrix U to the
points of 0. The coordinates (, ) of p in this new view will be:

=ulp, =u 2p

(where ul, u 2, are the first and second rows of U, r, spectively).

Assuming that el, e2 and rl span R? (see below), then:

u = ale 1 + a 2 e 2 + a 3 r

for some scalars a,, a2, a3 . Therefore:

= ulp = (ale, + a2e2 + a3r,)p = aix, + a2yI + a3x 2

This equality holds for every point p in 0, Let x, be the vector of all the x-coordinates
of the points in the first view, x 2 in the second, *: in the third, and yl the vector of y-
coordinates in the first view. Then:

R = aix + a2y, + a3x 2

9



Here xi, Yi and x2 are used as a basis for all of the views. For any other image of the
same object, its vector * of x-coordinates is the linear combination of these basis vectors.

Similarly, for the y-coordinates:
S' = b1xI + b2yi + b3x 2

The vector k of y-coordinates in the new image is therefore also the linear combination
of the same three basis vectors. In this version the basis vectors are the same for the
x- and y-coordinates, and they are obtained from two rather then three views. One can
view the situation as follows. Within an n-dimensional space, the vectors xi, Yi, x 2 span
a 3-dimensional subspace. For all the images of the object in question, the vectors of
both the x- and y-coordinates must reside within this 3-dimensional subspace.

Instead of using (el, e2, r1 ) as the basis for T?.Z we could also use (el, e 2, r2). One of
these bases spans TR3 , unless the rotation R is a pure rotation around the line of sight.

The use of two views described above is applicable to general linear transformations
of the object, and, without additional constraints, it is impossible to distinguish between
rigid and linear but not rigid transformations of the object. To impose rigidity (with
possible scaling) the coefficients (a,, a2, a3, bi, b2, b3 ) must meet two simple constraints.
Since U is now a rotation matrix (with possible scaling),

U1 u 2 = 0

II u1 II = II U2
In terms of the coefficients ai, bi, ul u 2 = 0 implies:

al b, + a2b2 + a3b3 + (alb3 + a3bl)r 1i + (a2b3 + a3b2)rl2 = 0

The second constraint implies:

2 2 2 2 2 2a, + a2 + a3
2 -bl - b2

2 -b3 = 9(bb 3 - ala3 )r + 2(b 2b3 - a2a3)r1 2

A third view can therefore be used to recover, using two linear equations, the values
of ril and r12. (rl and r12 can in fact be determined to within.a scale factor from
the first two views, only one additional equation is required.) The full scheme for rigid
objects is then the following. Given an image, determine whether the vectors R, k, are
linear combinations of xi, Y, and x 2. Only two views are required for this stage. Using
the values of riI and r12 , test whether the coefficients ai, b;, (i = 1,2, 3) satisfy the two
constraints above.

It is of interest to compare this use of two views to structure-from-motion (SFM)
techniques for recovering 3-D structure from orthographic projections. It is well known
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that three distinct views are required, two are insufficient [Ullman 19791. Given only two
views and an infinitesmal rotation (the velocity field), the 3-D structure can be recovered
to within depth-scaling [Ullman 1983]. It is also straightforward to establish that if the
two views are separated by a general affine transformation of the 3-D object (rather
than a rigid one), then the structure of the object can be recovered to within an affine
transformation.

Our use of two views above for the purpose of recognition is thus related to known
results regarding the recovery of structure from motion. Two views are sufficient to
determine the object's structure to within an affine transformation, and three are required
to recover the full 3-D structure of a rigidly moving object. It can also be observed that
an extension of the scheme above can be used to recover structure from motion. It was
shown how the scheme can be used to recover ril and r 12 . r 21 and r 2 2 can be recovered in
a similar manner. Consequently, it becomes possible to recover 3-D structure and motion
in space based on three orthographic views, using linear equations.

1.3.6 Summary

In this section we have shown that an object with sharp contours, undergoing rigid
transformations and scaling in 3-D space followed by an orthographic projection, can be
expressed as the linear combination of four images of the same object. In this scheme,
the model of a 3-D object consists of a number of 2-D pictures of it. The pictures are in
correspondence, in the sense that it is known which are the corresponding points in the
different pictures. Two images are sufficient to represent general linear transformations
of the object. Three images are required to represent rotations in 3-D space, and one
additional image is required to represent translations. The scaling does not require any
additional image, since it is represented by a scaling of the coefficients. As mentioned
above, the fourth picture can be generated internally, therefore only three different snap-
shots of the object are required.

The linear combination scheme assumes that the same object points are visible in
the different views. When the views are sufficiently different, this will no longer hold,
due to self-occlusion. To represent an object from all possible viewing directions (e.g.
both "front" and "back"), a number of different models of this type will be required.
This notion is similar to the use of different object aspects suggested by Koenderink &
Van Doorn [1979]. (Other aspects of occlusion are examined in the final discussion and
Appendix D.)

The linear combination scheme described above was implemented and applied first
to artificially created images. Figure 2 shows examples of object models and their linear
combinations. The figure shows how 3-D similarity transformations can be represented
by the linear combinations of four images.

11
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(a)

(b)

(c)

(d)

Figure 2: (a) Three model pictures of a cube. The second picture was obtained by rotating
the cube by 300 around the X-axis, then by 300 around the Y-axis. The third picture was
obtained by rotating the cube by 300 around the Y-axis, then by 300 around the X-axis. (b)
Three model pictures of a pyramid taken with the same transformations as the pictures in
(a). (c) Two linear combinations of the cube model. The left picture was obtained using the
following parameters: the x-coefficients are (0.343, -2.618, 2.989,0), and the y-coefficients are
(0.630, -2.533, 2.658, 0), which correspond to a rotation of the cube by 100, 200 and 450 around
the X-, Y- and Z-axes respectively. The right picture was obtained using the following pa-
rameters: z-coefficients (0.455,3.392, -3.241,0.25), y-coefficients (0.542, 3.753, -3.343, -0.15).
These coefficients correspond to a rotation of the cube by 20', 10' and -45* around the X-,
Y- and Z-axes respectively, followed by a scaling of factor 1.2, and a translation of (25, -15)
pixels. (d) Two linear combinations of the pyramid model taken with the same parameters as
the pictures in (c).
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1.4 Objects with Smooth Boundaries

The case of objects with smooth boundaries is identical to the case of objects with sharp
edges as long as we deal with translation, scaling and image rotation. The difference
arises when the object rotates in 3-D space. This case is discussed in [Basri & Ullman,
1988], where we have suggested a method for predicting the appearance of such objects
following 3-D rotations. This method, called "the curvature method", is summarized
briefly below.

A model is represented by a set of 2-D contours. Each point p = (x, y) along the
contours is labeled with its depth value z, and a curvature value r. The curvature value
is the length of a curvature vector at p, r =11 (r,, ry) 1. (r. is the surface's radius of
curvature at p in a planar section in the X direction, ry in the Y direction.) This vector
is normal to the contour at p. Let Vj be an axis lying in the image plane and forming an
angle 0 with the positive X direction, and rj be a vector of length rj = ry cos 0 - r. sin €
and perpendicular to V6. When the object is rotated around VO we approximate the new
position of the point p in the image by:

p' = R(p - ro) + ro (1)

where R is the rotation matrix. The equation has the following meaning. When viewed
in a cross section perpendicular to the rotation axis V,, the surface at p can be approx-
imated by a circular arc with radius rj and center at p - r6. The new rim point p' is
obtained by first applying R to this center of curvature (p - rj), then adding the radius
of curvature rj. This expression is precise for circular arcs, and gives a good approxima-
tion for other surfaces provided that the angle of rotation is not too large (see [Basri &
Ullman 1988] for details). The depth and the curvature values were estimated in [Basri
& Ullman 19881 using three pictures of the object, and the results were improved using
five pictures. In this section we show how the curvature method can also be replaced by
linear combinations of a small number of pictures. In particular, we use three images to
represent rotations around the vertical axis, and five images for general rotations in 3-D
space.

1.4.1 3-D Rotation Around the Vertical Axis

When an object rotates around the vertical (Y) axis by an angle 0, rk in equation (1)
above becomes ra, which is a horizontal vector of length ra = r,. Therefore, the new
position of a point p = (x, y) is given by p' = (x', y') where:

x'= (x-r,,)cos0+zsin 0r = xcos0+zsin0+r,(1-cos0)

y =y

is 13



This expression gives the new coordinates (x', y') in terms of the original coordinates
(z, y), the rotation angel 0, the local depth z and the radius of curvature r-. Next we
show that the new image can be expressed instead as the linear combination of three 2-D
images.

Let P1, P2 and P3 be three images of an object 0 rotating around the vertical (Y)
axis. P2 is obtained from P by a rotation by an angle a, and P3 by a rotation by an
angle 3 (a # 3, a, 03 kir). Let P be another image of the same object obtained from
P1 by a rotation by an angle 0 around the vertical axis. We assume that the curvature
scheme gives sufficiently close approximation to the images. Under this assumption, the
positions of a point p = (x, y, z) E 0 can be expressed in the following manner:

Pi = (Xi, Y) = (x,y) E 1
P2 = (X2, y 2) = (xcosa+ zsina+r,(1-cosa),y) E P2
P3 = (x 3,y 3 ) = (xcos/3+zsin/3+r.(1-cos 3),y) E P3
P = (i, y) = (xcos0+zsin0+r,(l-cos0),y) E P

Claim: P is a linear combination of P1, P2, P3 . That is, there exist scalars a, b and c

such that for every four corresponding points pi,p2,p3,P:

x = axl + bx2 + cx 3

with:
a+b+c= I

and:
a2 + b2 + c2 + 2abcosa + 2accos 3 + 2bccos(3 - a) = 1

Proof: We construct a, b and c explicitly. Let:

sin(a - 0) - sin(3 - 0) - sin(a - 3)
sin a - sin 3 - sin(a - 3)

b -sin/3 + sin 0 + sin(3 - 0)
sin a - sin 3 - sin(a - 3)

sin a - sin 0 - sin(a - 0)
sin a - sin 3 - sin(a - /3)

(a # 3 and a, /3 5 k~r implies that sin a - sin 3 - sin(a - /3) # 0). It follows that:

ax, + bx2 + cx3 =

sin(a - 0) - sin(3 - 0) - sin(a - 3)
sin a - sin 3 - sin(a -/3)

14



+ sin# + sin 0 + sin(# - 0) (z cos a + z sin a + r,(1 - cos a))+
sin a - sin # - sin(a - #)

+ sin a - sin 0 - sin(a - 0) (x cos / + z sin /3 + r,(1 - cos 3)) =sin a - sin # - sin(a - #)
= (x cosO + zsin0 + r-(1 -cos 0)) =

Therefore, an image of an object rotating around the vertical axis and described accu-
rately by the curvature method is always a linear combination of three model images. In
addition, if we substitute the values above for a, b and c in the two functional constraints
we obtain that:

a+b+c= 1

a2 + b2 + c2 + 2abcosca + 2accos/3 + 2bc cos(/3 - a) = 1

1.4.2 General Rotation in 3-D Space

In this section we first derive an expression for the image deformation of an object with
smooth boundries under general 3-D rotation. We then use this expression to show that
the deformed image can be expressed as the linear combination of five images.

Computing the transformed image.

Using the curvature method we can predict the appearance of an object undergoing a
general rotation in 3-D space as follows. A rotation in 3-D space can be decomposed
into the following three successive rotations: a rotation around the Z-axis, a subsequent
rotation around the X axis, and a final rotation around the Z-axis, by angles a, /3 and
-i respectively. Since the Z-axis coincides with the line of sight, a rotation around the
Z-axis is simply an image rotation. Therefore, only the second rotation deforms the
object, and the curvature method must be applied to it. Suppose that the curvature
vector at a given point p = (x,y) before the first Z-rotation is (r1 , ry). Following the
rotation by a it becomes r, = r cos a - r sin a and r' = r., sin a + ru cos a. The second

rotation is around the X-axis, and therefore the appropriate r, to be used in eq. (1)
becomes r' = r, sin a + ry cos a. The complete rotation (all three rotations) therefore
takes a point p = (x, y) through the following sequence of transformations:

(x, y) ? (x cos a - y sin a, x sin a + y cos a) -

(xcosa- ysin a, (xsina + ycos a)cos 3- zsin,3 + (r.sina + r.cosa)(1 -cos 3 ))---

((x cos a-y sin a) cos 7+((x sin a+y cos a) cos /3-z sin3+(r, sin a+r, cos a)(1 -cos /3)) sin y

(x cos a-y sin a) sin -+((x sin a+y cos a) cos /3- Z sin /3+(r sin a+ry cos a)(l -cos /3)) cos y)
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(The first of these transformations is the first Z-rotation, the second is the deformation
caused by the X-rotation, and the third is the final Z-rotation).

This is an explicit expression of the final coordinates of a point on the object's contour.
This can also be expressed more compactly as follows. Let R = {rij } be a 3 x 3 rotation
matrix. Let a, P3 and -t be the angles of the Z-X-Z rotations represented by R. We
construct a new matrix R' = {r, } of size 2 x 5 as follows:

= (ril r 12 r 13  sin a(1 - cos 0) sin y cos a(1 - cos )siny')
kr 21 r 22 r 23 sina(1 -cos/3)cosy cosa(1 -cos 0)cosJ

Let p = (x, y) be a contour point with depth z and curvature vector (re, r,), and let
p = (x, y, z, r., r.). Then, the new appearance of p after a rotation R is applied to the
object is described by:

p' = n'P (2)

This is true because eq. (2) is equivalent to eq. (1) in section 1.4 with the appropriate
values for ro.

Expressing the transformed image as a linear combination.

Let 0 be a set of points of an object rotating in 3-D space. Let P1, P2, P3, P4 and
P5 be five images of 0, obtained by applying a rotation matrix R 1 , ..., R.5 respectively.
P is an image of the same object obtained by applying a rotation matrix f? to 0. Let
R', ... , R5, R' be the corresponding 2 x 5 matrices representing the transformations applied
to the contour points according to the curvature method. Finally, let rl, ..., rs, i denote
the first row vectors of R',..., R', k, and sl,..., s5, A the second row vectors R',..., R', R'
respectively. The positions of a point p = (x,y) E 0, =(x, y, z, r, ry), in the six
pictures is then given by:

pi = (xi, yi) = (ript, sip) E Pi, 1 <i<5
P (- = (i 7 , 9) E P

Claim: If both sets {r1 , ... , rs} and {si, ..., s5} are linearly independent vectors then
there exist scalars a1, ..., a5 and bl, ... , b5 such that for every point p E 0 it holds that:

5

= Z aixi
i=l

5
) = biyi

=

Proof: {r , ... , r 5} are linearly independent. Therefore, they span Zs , and there exist
scalars a,..., a5 such that:

5

t=1



Since:

Then:
5

i=1

That is:

aixi

In a similar way we obtain that:
5

ii
i=1

In addition, for pure rotation, the coefficients of this linear combinations satisfy seven
functional constraints. These constraints, which are second degree polynomials, are given
in Appendix A.

Again, one may or may not actually test for these additional constraints. If the test
is omrnitted, the probablity of a false-positive misidentification is slightly increased.

As in the case of sharp boundaries, it is possible to use mixed x- and y-coordinates to
reduce the number of basic views for genral linear transformations (Section 1.3.5). For
example, one can use five basis vectors (xI, x 2, x 3, Y1, Y2) taken from three distict views
as the basis for the x- and y-coordinates in all other views.

1.4.3 Rigid Transformation and Scaling in 3-D Space

So far we have shown that an object with smooth boundaries, represented by the cur-
vature scheme, and undergoing a rotation in 3-D space, can be represented as a linear
combination of 2-D views. The method can be easily extended to handle translation by
taking, as before, an additional image of the object. The linear combination scheme for
objects with smooth bounding contours is thus a direct extension of the scheme in section
1.3 for objects with sharp boundaries. In both cases, object views are expressed as the
linear combination of a small number of pictures. The scheme for objects with sharp
boundaries can be viewed as a special case of the more general one, when r, the radius
of curvature, vanishes. In practice, we found that it is also possible to use the scheme for
sharp boundaries, that uses a smaller number of views in each model, for general objects,
provided that r is not too large (and at the price of increasing the number of models).

17



1.4.4 Summary

In this section we have shown that an object with smooth boundaries undergoing rigid
transformations and scaling in 3-D space followed by an orthographic projection, can be
expressed (within the approximation of the curvature method) as the linear combination
of six images of the object. Five images are used to represent rotations in 3-D space,
and one additional image is required to represent translations. (In fact, although the
coordinates are expiessed in terms of five basis vectors, only three distinct views are
needed for a general linear transformation.) The scaling does not require any additional
image since it is represented by a scaling of the coefficients. This scheme was implemented
and applied to images of 3-D objects.

Figures 3 and 4 show the application of the LC (linear combination) method to com-
plex objects with smooth bounding contours. Since the rotation was about the vertical
axis, three 2-D views were used for each model. The figure shows a good agreement
between the actual image and the appropriate linear combination. Although the objects
are similar, they are easily discriminable by the LC method within the entire 600 rotation
range.

Finally, it is worth noting that the modeling of objects by linear combinations of
stored pictures is not limited only to rigid objects. The method can also be used to
deal with various types of non-rigid transformations, such as articulations and non-rigid
stretching. For example, in the case of an articulated object, the object is composed of a
number of rigid parts linked together by joints that constraint the relative movement of
the parts. We saw that the x- and y-coordinates of a rigid part are constrained to a 4-D
subspace. Two rigid parts reside within an 8-D subspace, but, because of the constraints
at the joints, they usually occupy a smaller subspace (e.g., 6-D for a planar joint).
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Figure 3: (a) Three model pictures of a VW car for rotations around the vertical axis. The sec-
ond and the third pictures were obtained from the first by rotations of ±300 around the Y-axis.
(b) Two linear combinations of the VW model. The r-coefficients are (0.556,0.463, -0.018)
and (0.582, -0.065,0.483) which correspond to a rotation of the first model picture by ±15'.
These are artificial images, created by linear combinations of the first three views, rather than
actual views. (c) Real images of a VW car. (d) Matching the linear combinations to the real
images. Each contour image is a linear combination super-imposed on the actual image. The
agreement is good within the entire range of ±30'. (e) Matching the VW model to pictures of
the Saab car.
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Figure 4: (a) Three model pictures of a Saab car taken with approximately the same trans-
formations as the VW model pictures. (b) Two linear combinations of the Saab model. The
x-coefficients are (0.601, 0.471, -0.072) and (0.754, -0.129, 0.375) which correspond to a rota-
tion of the first model picture by ±150. (c) Real images of a Saab car. (d) Matching the linear
combinations to the real images. (e) Matching the Saab model to pictures of the VW car.
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2 Determining the Alignment Coefficients

In the previous sections we have shown that the set of possible views of an object can
often be expressed as the linear combination of a small number of views. In this sec-
tion we examine the problem of determining the transformation between a model and a
viewed object. The model is given in this scheme as a set of k corresponding 2-D images
{M 1 , ... ,M,,}. A viewed object P is an instance of this model if there exists a set of
coefficients {al, ..., ak} (with a possible set of restrictions F(ai,..., ak) = 0) such that:

P = aiMi + ... + aMk (3)

In practice we may not obtain a strict equality. We will attempt to minimize, therefore,
the difference between P and a1Ml +... +akMk. The problem we face is how to determine
the coefficients {ai, ..., ak,. In the following subsections we will discuss three alternative
methods for approaching this problem.

2.1 Minimal Alignment: Using a Small Number of Corre-
sponding Features

The coefficients of the linear combination that align the model to the image can be deter-
mined using a small number of features, identified in both the model and the image to be
recognized. This is similar to previous work in the framework of the alignment approach
[Fishler & Bolles 1981, Huttenlocher & Ullman 1987, Lowe 1985, Ullman 1986,1989]. It
has been shown that three corresponding points or lines are usually sufficient to deter-
mine the transformation that aligns a 3-D model to a 2-D image [Ullman 1986,1989,
Huttenlocher & Ullman 1987, Shoham & Ullman 1988], assuming the object can undergo
only rigid transformations and uniform scaling, in previous methods, 3-D models of the
object were stored. The corresponding features (lines and points) were then used to
recover the 3-D transformation separating the viewed object from the stored model.

The coefficients of the linear combination required to align the model views with the
image can be derived in principle, as in previous methods, by first recovering the 3-D
transformations. They can also be derived directly, however, by simply solving a set of
linear equations. This method requires k points to align a model of k pictures to a given
image. Therefore, four points are required to determine the transformation for objects
with sharp edges, and six points for objects with smooth boundaries. In this way we
can deal with any transformation that can be approximated by linear combinations of
pictures, without recovering the 3-D transformations explicitly.

The coefficients of the linear conbination are determined by solving the following
equations. We assume that a small number of corresponding points (the "alignment



points") have been identified in the image and the model. Let X be the matrix of the
x-coordinates of the alignment points in the model. That is, xij is the z-coordinates of
the j'th point in the i'th model-picture. p, is the vector of x-coordinates of the alignment
points in the image, and a is the vector of unknown alignment parameters. The linear
system to be solved is then Xa = p,,. The alignment parameters are given by a = X-'p,
if an exact solution exists. We may use an overdetermined system (by using additional
points), in which case a = X+p, (where X + denotes the pseudo-inverse of X). The
matrix X+ does not depend on the image and can be pre-computed for the modul. The
recovery of the coefficients therefore requries only a multiplication of p, by a known
matrix. Similarly, we solve for Yb = p. to extract the alignment parameters b in the
y-direction from Y (the matrix of y-coordinates in the model), and py (the corresponding
y-coordinates in the image).

It is also worth noting that the computation can proceed in a similar fashion on the
basis of correspondence between straight line segments rather than points. In this case,
due to the "aperture problem" [Marr & Ullman 1981], only the perpendicular component
(to the contour) of the displacement can be measured. This component can be used,
however, in the equations above. In this case each contour segment contributes a single
equation (as opposed to a point correspondence, that gives two equations).

One question that may arise in this context is whether the visual system can be
expected to extract reliably a sufficient number of alignment features. Two comments
are noteworthy. First, this difficulty is not specific to the linear combination scheme,
but applies to other alignment schemes as well. Second, although the task is not simple,
the phenomenon of apparent motion suggests that mechanisms for establishing feature
correspondence do in fact exist in the visual system.

It is interesting to note in this regard that the correspondence established during
apparent motion appears to provide sufficient information for the purpose of recognition
by linear combinations. For example, when the car pictures in figure 5(a) are shown
in apparent motion, the points marked in the left picture appear perceptually to move
and match the corresponding points marked in the right picture. These points, with
the perceptually established match, were used to align the model and images in figure
5. That is, the coordinates of these points were used in the equations above to recover
the alignment coefficients. The model contained six pictures of a Saab car in order to
cover all rigid transformations for an object with smooth boundaries. As can be seen,
a close agreement was obtained between the image and the transformed model. (The
modet contained only a subset of the contours, the ones that were clearly visible in all of
the different pictures.)
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Figure 5: Aligning a model to images using corresponding features. (a) Two images of a Saab
car, and one of the six model pictures. (b) The corresponding points used to align the model
to the images. The correspondence was determined using apparent motion, as explained in the
text. (c) The transformed model. (d) The transformed model super-imposed on the original
images.
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2.2 Searching for the Coefficients

An alternative method to determine the best linear combination is by a search in the
space of possible coefficients. In this method we choose some initial values for the set
{ai, ..., ak} of coefficients, then we apply a linear combination to the model using this set
of coefficients. We repeat this process using a different set of coefficients, and take the
coefficient values that produced the best match of the model to the image.

The most problematic aspect of this method is that the domain of coefficients might
be large, therefore the search might be prohibitive. We can reduce the search space
by first performing a rough alignment of the model to the image. The identification of
general features in both the image and the model, such as a dominant orientation, the
center of gravity, and a measurement of the overall size of the imaged object, can be used
for compensating roughly for image rotation, translation and scaling. Assuming that
this process compensates for these transformations up to a bounded error, and that the
rotations in 3-D space covered by the model are also restricted, then we could restrict the
search for the best coefficients to a limited domain. Moreover, the search can b,. guided
by an optimization procedure. We can define an error measure (for instance, the area
enclosed between the transformed model and the image) that must be minimized, and use
minimization techniques such as gradient descent to make the search more efficient. The
preliminary stage of rough alignment may help preventing such methods from reaching
a local minimum instead of the global one.

2.3 Linear Mappings

The linear combination scheme is based on the fact that a 3-D object can be modeled by
the linear combination of a small number of picturcs. That is, the set of possible views of
an object is embedded in a linear space of a low dimensionality. We can use this property
to construct a linear operator that maps each member of such a space to a predefined
vector, which identifies the object. This method is different from the previous two in
that we do not recover explicitly the coenfficients (a,, ..., ak) of the linear combination.
Instead, we assume that a full correspondence has been established between the viewed
object and the stored model. We then use a linear mapping to test wether the viewed
object is a linear combination of the model views.

Suppose that a pattern P is represented by a vector p of its coordinates (e.g.,
(Xi, Yi, x2, Y2, ... , X,, Y,)). Let P and P2 be two different patterns representing the same
object. We can now construct a matrix L that maps both P, and P2 to the same output
vector q. That is Lp1 = Lp 2 = q. Any linear combination ap, + bp2 will then be
mapped to the same output vector q, multiplied by the scalar a + b. We can choose, for
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example, q = Pl, in which case any view of the object will be mapped by L to a selected
"canonical view" of it.

We have seen above that different views of the same object can usually be expressed as
linear combinations E aipi of a small number of representative views, P. If the mapping
matrix L is constructed in such a manner that Lpi = q for all the views Pi in the same
model, then any combined view 1 = 0 api, will be mapped by L to the same q (up to
a scale), since Lo = (E ai)q.

L can be constructed as follows. Let {Pi, .-., Pk} be k linearly independent vectors
representing the model pictures (we can assume that they are all linearly independent
since a picture that is not is obviously redundant). Let {Pk+l, ..., p,} be a set of vectors
such that {P1, ... , P,} are all linearly independent. We define the following matrices:

P = (Pl,--.,Pk,Pk+1,..., Pn)
Q = (q,..-,q,pk+1,...,pn)

We require that:
LP=Q

Therefore:
L = QP-1

Note that since P is composed of n linearly independent vectors, the inverse matrix P-1

exists, therefore L can always be constructed.

By this definition we obtain a matrix L that maps any linear combination of the set of
vectors {Pi, ... , Pk} to a scaled pattern aq. Furthermore, it maps any vector orthogonal
to {Pl, ... ,Pk} to itself. Therefore, if 1 is a linear combination of {P1, ... , Pk} with an
additional orthogonal noise component, it would be mapped by L to q combined with
the same amount of noise.

In constructing the matrix L, one may use more than just k vectors pi, particularly if
the input data is noisy. In this case a problem arises of estimating the best k-dimensional
linear subspace spanned by a larger collection of vectors. This problem is treated in
Appendix B.

In our implementation we have used Lpi = 0 for all the view vectors pi of a given
object. The reason is that if a new view of the object 1 is given by E aipi with E ai = 0,
then Lo = 0. This means that the linear mapping L may send a legal view to the zero
vector, and it is therefore convenient to choose the zero vector as the common output for
all the object's views. If it is desirable to obtain at the output level a canonical view of
the object such as P, rather than the zero vector, then one can use as the final output
the vector Pi - Lo5
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The decision regarding whether or not 1 is a view of the object represented by L can
be based on comparing 11 LO 11 with 1 11. If 05 is indeed a view of the object, then this
ratio will be small (exactly 0 in the noise free condition). If the view is "pure noise" (in
the space orthogonal to the span of (PI, --.Pk)), then this ratio will be equal to 1.

The general idea is somewhat similar to the associative mappings presented in [Koho-
nen, Oja & Lehti5 1981]. However, in our scheme, unlike the one presented by Kohonen,
Oja & Lehti6 [19811, we take advantage of the fact that intermediate views of 3-D objects
can be expressed as the linear combination of model views. Our scheme therefore uses
the coordinates of image contours, rather than the image intensity values.

Figure 6 shows the application of the linear mapping to two models of simple geo-
metrical structures, a cube (a) and a pyramid (b). For each model we have constructed a
matrix that maps any linear combination of the model pictures to the first picture of the
model. The matrices were applied to images (c) and (e), and the results are presented in
(d) and (f).

2.4 The Use of Linear Receptive Fields

Two of the three methods above are correspondence-based. They require the identifica-
tion of corresponding features in the model and the image to be recognized to recover
the coefficients or to apply the linear mapping. In this section we suggest a method that
may be used (along with some other methods) to alleviate to some degree the problem
of establishing a pointwise correspondence.

The goal is to test whether a viewed pattern 5 is a linear combination of patterns
in the model, without establishing a pointwise correspondence. To do this we use the
following idea. Suppose that, as before, an intermediate view P is the linear combination
of two views P and P2 in the model, that is, P = aP + bP2. Let us take now an
arbitrary group of 1 corresponding points in P1, P2 and P. Let al,...,al denote the 1
points in pattern P 1, bl, ..., b, in P2 and c,..., c1 in P. Let us denote by A, -Z Z'=1 aix
(i.e., the sum of the x-coordinates of all the points in a, ...ai). Similarly AY = i

.= F b, By = _ bi,, C. = ci. and C ,  c.. From the linear
combination, P = aP + bP2, it also follows that:

Cx = aA + bB,

Cy = aAy + bB

(We have seen above examples in which different coefficients were used for the x- and
y-coordinates. Here we have assumed for simplicity that they are identical). This demon-
strates that we can use corresponding subsets of points without resolving the individual
pointwise correspondence.
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(a)

(b)

Figure 6: (a) Applying cube and pyramid matrices to the cubes of fig. 2. (b) Applying pyramid
and cube matrices to the pyramids of fig. 2. Left column of pictures: the input images. Middle
column: the result of applying the appropriate matrix to the images, these results are identical
to the first model pictures (which serve as canonical views). Right column: the result of applying
the wrong matrix to the images, these results are not similar to the canonical views.
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It is worth mentioning that if we match a sufficient number of corresponding subsets
of points, the exact point to point correspondence can also be resolved, and the two
methods are equivalent. However, the number of subsets may be smaller than the number
of points, or we can take subsets of points that are corresponding in most of the points,
but not in all of them, and still obtain good results (as shown below).

To use the above idea it becomes necessary to establish a correspondence between
subsets of the patterns instead of the individual points. There are several possible ways
to approach this problem. Here we propose a simple method, motivated in part by
considerations of biological plausibility, that is based on the notion of linear receptive
fields.

A linear receptive field (LRF) is an operator that takes a weighted contribution of the
points falling within a given region, using a linear weighting function. We will assume
here that the LRF response is simply the average contribution of the points falling inside
its region. That is, given an image P, the response r is given by at + f09 (for some
parameters a, g) where the average is taken over all the points of P falling within the
receptive field.

Let us examine the response of an LRF of this type to the model and the viewed
object. Let P and P2 be two pictures in the model set, 5 is the viewed object, and
assume that P = aP1 + bP2 . Let rl, r2 and be the responses of the LRF to P1, P2 and
P respectively. For each pattern, the LRF "sees" only a subset of the points comprising
the pattern. The other points fall outside the receptive field. If the points seen by the
LRF in P1, P2 and P are corresponding points (even if the pointwise correspondence is
unknown), then it is clear from the considerations above that f = ar, + br2. In practice,
some of the points may not have counterparts inside the LRF, but the relation will
hold approximately provided that the majority of points remain within the limits of the
receptive field in P1, P2 and P. To obtain this condition it is desirable to: (1) use large
receptive fields, and (2) apply some rough alignment, as suggested in section 2.2 above,
prior to the match.

We can now proceed along the following line. Let r = (rl, r2 , ..., rm) be an ordered
set of LRFs. We define a model to be the result of applying this set r to each of the
model pictures. Given an image I, we first perform a process of rough alignment as
described earlier, and denote the result by I'. We apply the set r to I', and then we
check whether the result is a linear combination of the model pictures, that is, we look
for a set {ai,a 2 , ... ,ak} of coefficients such that for every 1 < i < "i it holds that:

k
ri(I') 1 : ajri(Pj) (4)

j=1

Practically, since a strict equality can rarely be achieved, we look for a set {al,a 2 , ... ,ak}
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of coefficients that minimize the difference between the two terms:

k

m II r(I') - E ajr(P)II (5){al ... ak) j=l

This problem can be approached, as with the pointwise correspondence, by either
computing a pseudo-inverse, or by performing the appropriate linear mapping.

A preliminary stage of rough alignment is required in this scheme to bring each
point in the image to lie close to a corresponding position in the model (one of the
model pictures). Consequently, each linear receptive field will contain a relatively large
proportion of corresponding points. As a result, the application of the set of LRFs to the
image will yield approximately a linear combination of the results of applying the same
set of LRFs to the model pictures. The justification for this approximation is given in
Appendix C. We show there that as the proportion of corresponding points within each
LRF increases, the result obtained by the application of this set of LRFs to the image
gets closer to a linear combination of the results obtained by applying these LRFs to the
model pictures.

The use of linear receptive fields serves in this scheme two distinct purposes. The first
is to establish correspondence between subsets of image points, rather than individual
points. The second is a conversion between two different types of representations. The
linear mapping method assumes that the position of points is given by the numerical
values of their x- and y-coordinates. The input image is given, however, in a different
representation: a 2-D array of points. The LRF serves to translate the position of a
point within the receptive field to a value representing the coordinate of the point. Other
conversion schemes are possible, but the LRF is a simple one that also appears to be
bilogically palusible. It is interesting to note that cells with linear receptive fields have
been described in area 7a of macaque monkeys [Zipser & Andersen 1988]. In Zipser &
Andersen's model these cells also serve the roll of converting position in the plane to a
firing rate that represents x- or y-coordinate.

3 General Discussion

We have proposed above a method for recognizing 3-D objects from 2-D images. In
this method, an object-model is represented by the linear combinations of several 2-D
views of the object. It was shown that for objects with sharp edges as well as with
smooth bounding contours the set of possible images of a given object is embedded
in a linear space spanned by a small number of views. For objects with sharp edges
the linear combination representation is exact. For objects with smooth boundaries
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it is an approximation that often holds over a wide range of viewing angles. Rigid
transformations (with or without scaling) can be distinguished from more general linear
transformations of the object by testing certain constraints placed upon the coefficients
of the linear combinations.

We have proposed three alternative methods for determining the transformation that
matches a model to a given image. The first method uses a small set of corresponding
features identified in both the model and the image. Alternatively, the coefficients can be
determined using a search. The third method uses a linear mapping as the main step in
a scheme that maps the different views of the same object into a common representation.

To avoids the need for pointwise correspondence, we suggested the possible use of
linear receptive fields to establish approximate correspondence between subsets of points.

The development of the scheme so far has been primarily theoretical, and initial
testing on a small number of objects shows good results. Future work should include
more extensive testing using natural objects, as well as the advancement of the theoretical
issues discussed below.

In the concluding section we discuss three issues. First, we place the current scheme
within the framework of alignment methods in general. Second, we discuss possible
extensions. Finally, we list a number of general conclusions that emerge from this study.

3.1 Classes of alignment Schemes

The schemes discussed in this paper fall into the general class of aiignment recognition
methods. Other alignment schemes have been proposed by Bajcsy & Solina [1987], Chien
& Aggarawall [1987], Faugeras , Hebert [1986], Fischler & Bolles [1981], Grimson &
Lozano-Perez [1984], Lowe [1985], Thompson & Mundy [1987]. In an alignment scheme
we seek for a transformation Ta out of a set of allowed transformations, and a model M
from a given set of models, that minimizes a distance measure d(M, Ta, P) (where P is
the image of the object). Ta is called the alignment transformation, it is supposed to
bring the model M and the viewed object P into an optimal agreement.

The distance measure d typically contains two contributions:

d(M, T, P) = di(T. M, P) + d2(Ta)

The first term d1(TM, P) measures the residual distance between the picture P
and the transformed model Taft! following the alignment, and d2 (Ta) penalizes for the
transformation Ta that was required to bring M into a close agreement with P. For
example, it may be possible to bring A! into a close agreement with P by stretching it
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considerably. In this case d, (T,,M, P) will be small, but, if large stretches of the object
are unlikely, d2 (T,) will be large. We will see below that different classes of alignment
schemes differ in the relative emphasis they place on d, and d2.

Alignment approaches can be subdivided according to the method used for deter-
mining the aligning transformation T. The main approaches used in the past can be
summarized by the following three categories.

Minimal alignment. In this approach T is determined by a small number of cor-
responding features in the model and the image. Methods using this approach assume
that the set of possible transformations is restricted (usually to rigid 3-D transformations
with possible scaling, or a Lie transformation group, [Brockett 1989]), so that the correct
transformation can be recovered using a small number of constraints.

This approach has been used by Faugeras & Hebert [1986], Fischler & Bolles [1981],
Huttenlocher & Ullman [1987], Shoham & Ullman [1988], Thompson & Mundy [1987],
Ullman [1986, 1989]. In these schemes the term d2 above is usually ignored, since there is
no reason to penalize for a rigid 3-D aligning transformation, and the match is therefore
evaluated by d, only.

The correspondence between features may be guided in these schemes by the labeling
of different types of features, such as cusps, inflections, blob-centers, etc. [Hutten!ocher &
Ullman 1987, Ullman 1989], by using pairwise constraints between features [Crimson &
Lozano-Perez 1984], or by a more exhaustive search (as in [Lamdan, Schwartz, & Wolfson
19871, where possible transformations are pre-computed and hashed).

Minimal alignment can be used in the context of the linear combination scheme
discussed in this paper. This method was discussed in Section 2.1. A small number of
corresponding features is used to determine the coefficients of the linear combination.
The linear combination is then computed, and the result compared with the viewed
image.

Full alignment. In this approach a full correspondence is established between the
model and the image. This correspondence defines a distortion transformation that
takes M into P. The set of transformations is not restricted in this approach to rigid
transformations. Complex non-rigid distortions are included as well. In contrast with
minimal alignment, in the distance measure d above, the first term d1 (T0 M, P) does
not play an important role, since the full correspondence forces TA1 and P to be in
close agreement. The match is therefore evaluated by the plausibility of the required
transformation Ta,. Our linear mapping scheme in section 2.3 is a full alignment scheme.
A full correspondence is established to produce a vector that the linear mapping can then
act upon.

Alignment search. In contrast with the previous approaches, this metod does not
use feature correspondence to recover the transformation. Instead, a search is conducted
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in the space of possible transformations. The set of possible transformations {T" } is
parametrized by a parameter vector a, and a search is performed in the parameter space
to determine the best value of a. The deformable template method [Yuille, Cohen, &
Hallinan, 19891 is an example for this approach. Section 2.2 described the possibility of
performing such a search in the linear combination app_,, -h to determine the value of
the required coefficients.

3.2 Extensions

The linear combination (LC) recognition scheme is restricted in several ways. It will be
of interest to extend it in the future in at least three directions: relaxing the constraints,
dealing effectively with occlusions, and dealing with large libraries of objects. We limit
the discussion below to brief comments on these three issues.

Relaxing the constraints

The scheme as presented assumes rigid transformation and an orthographic projection.
Under these conditions, all the views of a given object are embedded in a low-dimensional
linear subspace of a much larger space. What happens if the projection is perspective
rather than orthographic, or if the transformations are not entirely rigid? The effect of
perspectivity appears to be quite limited. We have applied the LC scheme to objects
with ratio of distance-to-camera to object-size down to 4:1, with only minor effects on
the results (less then 3% deviation from the orthographic projection for rotations up to
450).

As for non-rigid transformations, an interesting general extension to explore is where
the qet of views is no longer a linear subspace, but still occupies a low dimensional
manifold within a much higher dimensional space. This manifold resembels locally a
linear subspace, but it is no longer "globally straight". By analogy, one can visualize the
simple linear combinations case in terms of a 3-D space, in which all the orthographic
views of a rigid object are restricted to some 2-D plane. In the more general case the
plane will bend, to become a curved 2-D manifold within the 3-D space.

This appears to be a general case of interest for recognition as well as for other learning
tasks. For recognition to be feasible, the set of views {V} corresponding to a given object
cannot be arbitrary, but must obey some constraints, e.g., in the form F(V) = 0. Under
general conditions, these restrictions will define locally a manifold embedded in the larger
space. Algorithms that can learn to classify efficiently sets that form low dimensional
manifolds embedded in high dimensional spaces will therefore be of general value.

Occlusion
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In the linear combination scheme we assumed that the same set of points is visible in
the different views. What happens if some of the object's points are occluded by either
self-occlusion or by other objects?

As we mentioned in Section 1.3.5 self-occlusion is handled by representing an ob-
ject not by a single model, but by a number of models covering its different "aspects"
[Koenderink & Van Doorn 1979].

As for occlusion by other objects, this problem is handled in a different manner
by the minimal alignment and the full alignment versions of the LC scheme. In the
minimal alignment version, a small number of corresponding features are used to recover
the coefficients of the linear combination. In this scheme, occlusion doe s not present a
major special difficulty. After computing the linear combination, a good match will be
obtained between the transformed model the visible part of the object, and recognition
may proceed on the basis of this match. (Alignment search will behave in a similar
manner.)

In the linear mapping version, an object's view is represented by a vector vi of its
coordinates. Due to occlusion, some of the coordinates will remain unknown. A way of
evaluating the match in this case in an optimal manner is suggested in Appendix D.

Multiple models

We have considered above primarily the problem of matching a viewed object with a
single model. If there are many candidate models, a question arises regarding the scaling
of the computational load with the number of models.

In the LC scheme, the main problem is in the stage of performing the correspondence,
since the subsequent testing of a candidate model is relatively straightforward. The
linear mapping scheme is particularly attractive in this regard: once the correspondence
is known, the testing of a model requires only a multiplication of a matrix by a vector.

With respect to the correspondence stage, the question is how to perform efficiently
correspondence with multiple models. This problem remains open for future study, we
just comment here on a possible direction. The idea is to use pre-alignment to a prototype
in the following manner. Suppose that M1, ...,Mlk is a family of related models. A
single model Al will be used for representing this set for the purpose of alignment.
The correspondence T between each Ali in the set and Al is pre-computed. Given
an observed object P, a single correspondence T : M -- P is computed. The individual
transformations Al,i --+ P are computed by the compositions T o Ti.
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3.3 General conclusions

In this section we summarize birefly a number of general characteristics of the linear
combinations scheme. In this scheme, as in some other alignemnt schemes, significant
aspects of visual object recognition are more low-level in nature and more pictorial com-
pared with structural description recognition approaches [e.g., Biederman 1985]. The
scheme uses directly 2-D views rather than an explicit 3-D model. The use of the 2-D
views is different, however, from a simple associative memory [Abu-Mostafa & Psaltis
1987] where new views are simply compared in parallel to all previously stored views.
Rather than measuring the distance between the observed object and each of the stored
views, a distance is measured from the observed object to the linear subspace, (or a low
dimensional manifold) defined by previous views.

The linear combination scheme "reduces" the recognition problem in a sense to the
problem of establishing a correspondence between the viewed object and candidate mod-
els. The mehtod demonstrates that if a correspondence can be established, the remaining
computation is relatively straightforward. Establishing a reliable correspondence between
images is not an easy task, but it is a general task solved by the visual system (e.g. in
motion measurement and stereoscopic vision), and related processes may also be involved
in visual object recognition.
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Appendix A

In section 1.4.2 we showed that the images of an object with smooth surfaces rotating
in 3-D space can be represented as the linear combination of five views, and mentioned
that the coefficients for these linear combinations satisfy seven functional constraints. In
this appendix we list these constraints.

We use the same notation as in section 1.4.2. Let Rl, ..., R,5, . be 3 x 3 rotation ma-
trices, and R',..., R', ' be the corresponding 2 x 5 matrices defined in section 1.4.2. Let
r, ... r5, r be the first row vectors, and sl, ..., s5, 9 the second row vectors of R', ..., R',/R',
respectively. In section 1.4.2 we showed that each of the two row vectors of R' is a linear
combination of the corresponding row vectors of R', J?,...,R'. That is,

5

a= 1
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5

i=1

The functional constraints can be expressed as:

r2 + r2 + r2 = 1

i2I + 2 + = 1

na 1 + 7*292 + 6r3 = 0

r1 + r4 = 82 + 95

r 2 + 5 = -( 1 + 84)

(il "+ p4)2 + (I 1 + 4) 1

4 s5 = 4 5

(Constraints 1,2,3 and 7 are immediate. Constraints 4,5,6 can be verified by expressing
all the entries in terms of the rotation angles a,#3, 7-.)

To express these constraints as a function of the coefficients, every occurrence of a
term ij should be replaced by the appropriate linear combination, as follows:

5

= ai(r)j
i=1

5
j = b,(si~j

i=1

In the case of a similarity transformations (i.e., with scale change) the first two con-
straints are substituted by:

r + 2 + 1' = s1 + s2 + s3

Appendix B

In this appendix we describe a method to find a space of a given dimension, that lies as
close as possible to a given set of points.

Let {Pi, P2,..., p.m} be a set of points in 7"Z. We would like to find the (n - k)
dimensional space that lies as close as possible (in the least-square sense) to the points
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{PI, P2, ... ,p m }. Let P be the n x m matrix given by (P1, P2, ... , Pm). Let {u 1 , ... , un} be
a set of orthonormal vectors in "R.", and define Uk = span{uk+I, ... , un}. The sum of the
distances (squared) of the points PI, P2, ..., Pm from 1k is given by:

kD 2(UAk) = II 11u, 12

i=1

(Since F=,(pU,)2 is the squared distance of pi from 1k .)

Let F = PP t . Then:
k k k

D2 (Uk) = PItu, 12= Z(p tu,)t (p tu,)= ZutFu,
2=1 i=1 i=1

Any real matrix of the form XXt, is symmetric and non-negative. Therefore, F has n
eigenvectors and n real non-negative eigenvalues. Assume that the {u1, ..., u,,} above are
the eigenvectors of F with eigenvalues A, < A2 < < , respectively, then Fui = Aiui,
and therefore:

kD2(Uk) = EAi
i=1

Claim: Let {A, ..., AkI be the k smallest eigenvalues of F, then:

k

EA; = min D 2(Vk)
i -1 V A ;

Where the minimum is taken over all the linear subspaces of dimension n - k. Therefore,
span{Uk+1, ... , u} is the best (n - k) dimensional space through p, P2, ... , Pm.

Proof: Let Vk be a linear subspace of dimension (n - k). We must establish that:

D2 (Vk) > D 2(Uk)

Let {vI, ... , v,, be a set of orthonormal vectors in TRn such that Vk = span { Vk+ 1, *vn.

V = (vI, ... , vn), and U = (ui, ... , u,) are n x n orthonormal matrices. Let:

R = Ut V

Then:
UR=V

That is:
n

vj = Z rijui

i=1
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R is also orthonormal, therefore:

n n

t=1 j=l

Now:
n n

Fvj = F(Z riui) = Z jrjAjuj
i21 i2-1

And therefore:

v Fv3 = (Erju,)(Zr rjAj ,)
i=1 i=1

Since u~uj = 6ij we obtain that:

n

vtFvj r3A,

Therefore:
k k n n k

D2 (Vk) = Zv Fvj = r3.A = 2( r)9Ai
j;=1 3=1 i=i i=1 j=l

* Let: I

ai = Er31
j=1

Then:
nD 2 (Vk) = Zc iA

i=1

Where 0 < ai < 1 and i= , = k.

The claim we wish to establish is that the minimum is obtained when ai = 1 for
i = 1...k, and ai = 0 for i = k + 1...n. Assume that for Vk there exists 1 < m < k such
that am < 1, and k + 1 < I < n such that a, > 0. We can decrease a1 and increase am
(by min(at, 1 - am)), and this cannot increase the value of D2 (Vk). By repeating this
process we will eventually reach the value of D2(14). Since during this process the value
cannot increase, we obtain that:

D2(Uk) < D2(Vlk)

And therefore:
k

Ai = min D2(Vk)
=1 I~k
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Appendix C

In this appendix we establish that in the method using linear receptive fields the ap-
proximation improves with the proportion of corresponding points within each recep-
tive field, and derive a bound on the error. We are giver, a set of points in the im-
age 1 = (3k,..., 3a) that fall within a given receptive field, and k sets of model points
PI = (Pl, ... ,Plnj), ... , Pk = (Pkl, ... ,Pknk) that fall within the same receptive field. Let 1
be the average of 3, ... ,/pa, and pi the average of Pu, ... , pn, for every 1 < i < k. We next
show that the difference between z and the linear combination of Pi, ... , pj is bounded

by a term which is proportional to the relative number of corresponding points falling
within the receptive field.

Claim: For some given constants a,..., ak, let l be the largest index such that for
every 1 < j < l it holds that i1 aipij = Pj. Denote n = max{nl,...,nk,h}, d =
maxij,k{Ipij - PikI , Ii', - pkI} and q = 1 - i, then:

k kp- <ip qd(1 + jlI)
i=1 i=1

(where d is the diameter of the receptive field).

Proof: Let us first extend the sets of points in such a manner that each will have
the same number of points, n. We will do so by setting pij = Pi for every 1 < i < k,
ni < j < n, and let z = for every h < j < n. We now have a new set of vectors
P1, ... , Pk, 1 each of length n, all having the same averages they had originally. Therefore:

n n

k k n
= (3 - E p E PE-Z ip i =
n=l j=1 i=

n kE 1 j. - Eaipij
n2 j=l+lII =

Now, let dij = Pij - pil and dj = i, - P1, we obtain:

I k I c

i=1 +j=/+1 =1

=- +dj -Z ai(pi, ) =- d - I adi, <n. +=1 
_ 13=1
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E<_ji + Jl I di l) :5qd(1 + Jail)
j-I+ i=1 i---1

Therefore, the difference - -i aifid is bounded by a term which is proportional to
q.

ZFrom this claim we can conclude the following: Let p, ... , pk be the values obtained
by applying a linear receptive field to the pictures of a given model, and let 1 be the value
obtained by applying the same LRF to a given image. If the image can be presented
as a linear combination of the model pictures, then the error - I is bounded
by a term which is proportional to q. Therefore we can in principle reduce this term by
reducing q, that is, by constructing the LRF such that it will cover more corresponding
points of each picture.

Appendix D

In the linear mapping method a matrix L was constructed that maps every legal view v
of the object to a constant output vector. If the common output is chosen to be the zero
vector, then Lv = 0 for any legal view of the object.

In this appendix we consider briefly the case where the object is only partially visible.
We model this situation by assuming that we are given a partial vector p. In this
vect,:,r the first k coordinates are unknown, due to the occlusion, and only the last n - k
coordinates are observable. (A partial correspondence between the occluded object and
the model is assumed to be known.)

In the vector p we take the first k coordinates to be zero. We try to construct from
p a new vector p' by supplementing the missing coordinates so as to minimize 11 Lp'
The relation between p and p' is:

k

p =p + aiui

where the ai are unknown constants, and the ui are unit vectors along the first k coor-
dinates.

In matrix notation, we seek to complement the occluded view by minimizing:

min II Lp + LUa II

Where the columns of the matrix U are the vectors ui and a is the vector on the unknown
ai's.

39



The solution to this minimization problem is:

a = -[LU]+Lp

(where H+ denotes the pseudo-inverse of the matrix H). This means that the pseudo-
inverse (LU)+ will have to be computed. The matrix L is fixed, but U depends on the
points that are actually visible.

This optimal value of a can also be used to determine the output vector of the
recognition process Lp':

Lp'= (I - [LU][LU]+)Lp

p is then recognized as a legal v'ew if this output is sufficiently close to zero.
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